1 Here are two solids.

Cylinder

radius 4 cm height 10 cm

Hemisphere

radius 6 cm

volume of a hemisphere = $\frac{2}{3} \pi r^3$ where r is the radius

Which solid has the greater volume?

You **must** show your working.

[4 marks]

Volume of a hemisphere:
$$\frac{2}{3} \times 10 \times 6^3$$

2 Circle the solid that has 7 vertices.

[1 mark]

hexagonal prism

pentagonal prism pentagon-based pyramid

A box is the shape of half a cylinder on top of a cuboid.

Work out the volume of the box.

[4 marks]

Volume of half cylinder = $\frac{1}{2} \times 12 \times 13^2 \times 15$

= 1267.5 10

Total volume = 1560 + 3979.95...

- 5539.

()

Answer 5539 cm³

4 The cross section of a prism has n sides.

Circle the expression for the number of faces of the prism.

[1 mark]

n

2*n*

3*n*

5 Here is the plan of a solid.

Circle the solid that it could be.

[1 mark]

sphere cone hemisphere

A solid hemisphere has radius x.

A solid cylinder has radius 3x and height x.

Surface area of a sphere = $4\pi r^2$ where r is the radius

Work out the ratio

total surface area of the hemisphere : total surface area of the cylinder Give your answer in its simplest form.

You must show your working.

surface area of hemisphere:
$$\frac{4\pi x^2}{2} + \pi x^2 = 3\pi x^2$$
 [3 marks]

surface area of cylinder: 2x1(3x) +

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

A bowl is a hemisphere with radius 12 cm

Water is poured into the bowl at a rate of 325 cm³ per second for 8 seconds.

Does the water fill **more than** 70% of the bowl? You **must** show your working.

[4 marks]

volume of hemisphere =
$$\frac{1}{21} \times \frac{14^2}{3} \times 12 \times 12^3$$

3620 (1)

Yes. The water fills 71.8% of the bowl-

8 ABCDE is a pentagon.

Work out the area of the pentagon.

[3 marks]

Area of trapezium:
$$\frac{1}{2} \times (14+20) \times 11 = 187 \text{ cm}^2$$

Area of triangle:
$$\frac{1}{2} \times 10 \times 7 = 35 \text{ cm}^2$$

Answer cm²

9 Alec makes a bowl for dog food from a solid wooden cone.
The sketches show how the bowl is made.

The cone has radius 9 cm and perpendicular height 30 cm A smaller cone, with radius 6 cm, is removed.

Not drawn accurately

 $\mbox{Volume of a cone} = \frac{1}{3} \pi r^2 h$ where r is the radius and h is the perpendicular height

A hemisphere with radius 6 cm is then removed.

Not drawn accurately

Volume of a hemisphere $=\frac{2}{3}\pi r^3$ where r is the radius

Work out the volume of the remaining wood that forms the bowl.

[5 marks]

Volume of large cone :
$$\frac{1}{3} \times \pi \times q^2 \times 30 = 810 \pi$$

Volume of hemisphere =
$$\frac{2}{3} \times 12 \times 6^3 = 144 \times 10^{-3}$$

 cm^3 Answer

Here is a cone.

10 (a)

Curved surface area of a cone = $\pi r l$ where r is the radius and l is the slant height

Beth tries to work out the curved surface area in terms of π

Curved surface area of the cone = $\pi \times 5 \times 12$ = $60\pi\,\text{cm}^2$

What mistake has she made?

[1 mark]

The value of L should be 13 instead of 12

[1 mark]

40	/ b\	Adam uses $\pi = 3$ to estimate the area of the base of the cone.	1
10	(b)		
		Work out his estimate.	[2 marks]
		Area of the base of the cone = K×r2	
		- 3 x 5 ²	
		= 3 × 25	
		= 75 cm² /	
		~ 0	
		Answer cm ²	
10	(c)	Beth uses $\pi = 3.14$ to estimate the area of the base of the cone.	
		Is Beth's estimate more than or less than Adam's estimate? Tick a box.	

Less than

More than

3.14 is larger than 3.

Give a reason for your answer.

11 Here is a right-angled triangular prism.

Volume of prism :

The ratio of the edges is a:b:c:d=3:4:5:12

$$\frac{1}{2}$$
 x (axb) x d

The **volume** of the prism is 1125 cm³

Work out the total length of all of the edges of the prism.

[5 marks]

let length of edges is variable of x.

Volume of prism =
$$\frac{1}{2} \times 3x \times 4x \times 12x = 1125$$

 $x = 144x^3 = 2250$
 $x = 15.625$
 $x = \sqrt[2]{15.625}$
 $x = 2.5$

 $a : 3 \times 2.5 : 7.5$ cm

$$b = 4 \times 2.5 = 10$$
 cm Total length of edges = $2(7.5) + 2(10) + 10$
 $c = 5 \times 2.5 = 12.5$ cm

$$c = 5 \times 2.5 = 12.5 \text{ cm}$$

$$d = 12 \times 2.5 = 30 \text{ cm}$$

$$= 150 \text{ cm}$$

Answer J50 cm

12 A cylinder, C, and a sphere, S, each have radius r C has height h

Volume of a sphere $=\frac{4}{3}\pi r^3$ where r is the radius

12 (a) volume of C = volume of S

Work out the ratio r: h

You **must** show your working.

[3 marks]

volume of
$$c = \pi r^2 h$$

volume of $S = \frac{4}{3} \pi r^3$

12 (b) A **different cylinder** has radius 3r and height 2h.

How many times bigger is the volume of this cylinder than the volume of C?

[2 marks]

